
WHITEPAPER

A Guide to Runtime
Application Self-Protection
(RASP)

imperva.com2 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

01 	 The Application Security Ecosystem ... 3

02 	 RASP Value & Use Cases...7

03 	 RASP Technology Implementation...14

04 	 Evaluation Criteria for RASP..17

05 	 Conclusion .. 22

Contents

http://www.imperva.com

imperva.com3 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

Figure 1: A typical enterprise using web-based applications as their business

1.0 The application security ecosystem
Application security has taken a shape of its own in recent times, and there is still no
single standard definition for application security. This guide aims to identify the various
pieces of application security within an end-to-end ecosystem as well as provide a
deeper dive into the newest innovation that focuses on securing applications: Runtime
Application Self-Protection (RASP).

The enterprise architecture framework

Web Browser

Endpoint

Web Browser

Load Balancer

NG Firewall

Web App Firewall

API Gateway

Backend
Application

Runtime Sec

Web API

Runtime Sec

SIEM

Database Firewall

SQL DatabaseHardening
SDK/Wrapper

Most enterprises today have both legacy and new software that drive their business,
and these applications sit within a complex environment spanning the network,
application, database, and operating system. With applications both on-premises and
in the cloud, organizations are in different states of digital transformation. The older the
enterprise, the more fragmented its environment. Fragmentation occurs in the Developer
or DevOps environment with its multiple languages (JAVA, .NET, Node.js, etc) and
multiple databases. Fragmentation is also seen in application security, with multiple and
often disparate layers of security controls, ranging from static, dynamic, and interactive
security testing (SAST, DAST, IAST) to Runtime Application Self-Protection (RASP),
as well as perimeter-based protection with network firewalls and web application
firewalls (WAFs).

Fragmented organizations & control

A successful application security program requires multiple domains and resources to
interwork and exchange information. In addition to the technical components (apps,
infrastructure tools, security controls), there are two major organizations involved:
Builders and Defenders.

http://www.imperva.com

imperva.com4 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

Builders

Teams typically reside in the business, technology and product units. Their goal is
to push applications into production as quickly as possible under the pressure of
quickening release cycles. The environment in which they work is undergoing three
major disruptions:

1.	 IT Changes - The rise of software-defined data centers, virtualization,
containerization, public and private cloud, SaaS, IaaS, and PaaS are resulting
in a new set of challenges that distract Builders from the main goal: developing
applications fast.

2.	 DevOps - Most application development teams are now joining forces with their IT/
CIO organization to move to an agile DevOps environment, helping with speed, agility
of development, and feedback.

3.	 DevSecOps - Builders are often forced to work closely with Defenders, (teams
within the CSO / CISO org) or security admins to fix or mitigate their vulnerability
backlogs. While processes like Secure SDLC, scanning tools like SAST/DAST/IAST,
and penetration testing all point to issues within applications, the pressures of time,
budget, performance, and the challenges of remediation often force developers to
push code to production in spite of known risks.

RASP plugin attached
from the start

RASP is part of the app
throughout the SSDLC

Applications are
secure by default

Log data for
insights in SIEM /
analytics platform

Continuous
Integration

Continuous
Deployment

Figure 2: The Secure Software Development Life Cycle (SSDLC) as it aligns with automated DevOps processes

As such, Builders are asserting a few simple requirements for security and control:

1.	 A security tool should have negligible impact on application performance.

2.	 The CISO’s office must prioritize vulnerabilities by criticality and provide real attack
data from production environments (as opposed to theoretical analyses of code).

3.	 As the CIO’s office implements architectural changes in order to move to a
software-defined data center, it must make any infrastructure changes transparent
to applications.

http://www.imperva.com

imperva.com5 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

Defenders

Teams typically reside within the CSO/CISO organizations. Their goal is to holistically
address enterprise security and reduce risk. Historically, the scope of these teams
have involved management of penetration testing programs and application security
testing solutions, as well as overseeing WAF and RASP technologies. While they have
access to SIEM technologies, most analytics are still too basic to provide actionable data
or significantly improve defense and response. Information security executives, who
oversee the Defenders’ efforts, are facing four major obstacles:

1.	 Applications are distributed and complex, and application security approaches
are also fragmented. Virtualization, microservices and the cloud make applications
& data ubiquitous, impossible to monitor consistently and accurately. And security
strategies are mainly just a patchwork of marketplace tools and services that are
often not flexible or portable.

2.	 Attack volumes are increasing, and the sophistication of common attack vectors
are by passing existing controls. There is a need for simple, pragmatic, application
security controls that work to prevent common, modern attack vectors such as those
listed in the OWASP Top 10, which account for the majority of attacks.

3.	 Critical production applications are at risk due to unmitigated vulnerabilities.
Defenders understand the inevitable exposure to risk created when Builders are
forced to push applications into production with known vulnerabilities. Security
controls & vulnerability mitigation tools must keep up with DevOps, but they are not.

4.	 No visibility into runtime security events. Despite analysis at the pre-production
stage or intelligence gathered at the network layer, Defenders can’t access useful
runtime attack data.

Strengthening the ecosystem with runtime technologies for
application protection

Gartner first defined Runtime Application Self-Protection (RASP) as a security
technology built or linked into an application runtime environment to control execution
and prevent real time attacks1. Before RASP entered the security market, the industry’s
offerings provided protections on the network layer and on the host, but lacked
active protection at the application layer. With the exception of a WAF, there were no
production environment protections to provide controls at runtime. The application
security space is not trivial nor is it well defined.

RASP is a tool that typically falls under the “Runtime Testing and Protection” or
“Application Self Protection” category. The National Institute of Standards and
Technology (NIST) even outlines Runtime Application Self-Protection (RASP) as a control
to mitigate risk due to software security vulnerabilities. RASP is important not only in its
own function but also in how it differs from and/or interacts with the other technologies
in the ecosystem. More often than not, RASP supplements and even improves the
effectiveness of other tools. The following table aims to define the various technologies
in the application security ecosystem that potentially interact with RASP, and how.

1Gartner IT Glossary: Runtime Application Self-Protection (RASP)

http://www.imperva.com
https://www.gartner.com/en/information-technology/glossary/runtime-application-self-protection-rasp

imperva.com6 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

WAFS vs. RASP: isn’t a WAF enough?

A web application firewall (WAF) normally sits in front of web applications, inspecting
incoming HTTP request traffic for known attack payloads and abnormal usage patterns.
When a suspicious payload or usage is detected, the WAF can either report the violation
or report and block the request. WAFs are a great option for protecting against the
following types of attack: volumetric (DDoS), bot automation (harvesting, scraping, etc.),
account takeover (credential stuffing), and API security (north/south).

RASP offers a critical layer of attack prevention behind a WAF or next-generation WAF.
The RASP approach differs from traditional WAFs because it is tightly coupled with the
application code. RASP uses contextual awareness, without blacklists or whitelists, to
detect threats and provide assurance that a particular payload will not be able to exploit
an unknown part of the application code. RASP technology inspects the complete (and
often-times transformed data) in the context of how the application will use it, if and
only if the application will attempt to use the data. The result is very low false positives
and high visibility into vulnerabilities — including weaknesses previously unknown to the
organization. In this way, RASP complements WAFs and serves as a last line of defense
in application security.

TECHNOLOGY INTERACTION

WEB APPLICATION
FIREWALL (WAF) OR
NEXT-GENERATION WAF

WAFs monitor and block traffic by applying rules and are useful as the first layer of defense.
WAFs are a good option at the perimeter to stop DDoS attacks, malicious bots, script kiddies,
etc. RASP is not a proxy nor does it block traffic; instead, it neutralizes malicious or malformed
payloads and specific inputs to serve as a last line of defense. Because it sits within the
application, it has access to attack details, including unsanctioned database activity. Leading
solutions from WAF vendors view RASP as a complementary technology. See more in “WAFS vs.
RASP” above.

DYNAMIC APPLICATION
SECURITY TESTING
(DAST)

Leading DAST solutions like that of Veracode provide visibility into vulnerabilities. The
interaction between DAST and RASP is simple. RASP can be used to prioritize vulnerabilities
before running any testing tool, guiding developers on how best to minimize risk and ensuring
effective secure coding practices. RASP can also be installed on an application in production
and turned on in protection mode. Attacks and abnormal inputs are cleaned and mitigated in
real time, and proof of runtime threat protection is reported in logs and dashboards in leading
SIEMs including Splunk.

SECURITY INCIDENT AND
EVENT MANAGEMENT
(SIEM)

RASP sits inside the application and enriches attack data with critical insights into where any
transformation or exfiltration attempt took place, and by what bad actor, greatly improving
a SIEM’s security analytics with runtime intelligence. Most leading vendors like Splunk allow
for logs and files to be visually displayed as well as run through data analytics engines to
determine patterns. All RASP solutions should have the ability to generate monitoring and
protection logs in the LEEF and JSON formats. The LEEF format is leveraged by SIEMs including
ArcSight, QRadar and Nitro. JSON logs can be ingested by more modern/flexible SIEMs such as
Splunk or even Elasticsearch.

http://www.imperva.com

imperva.com7 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

2.0 RASP Value & Use Cases
RASP entered the market as a progressive alternative to the application security status
quo. So what problems does RASP solve, and how? Below, we outline RASP’s main
values to the enterprise:

Better defenses

Real-time vulnerability mitigation

Remediation efforts are unable to verify and mitigate 100% of application security
vulnerabilities found in the secure software development life cycle. Nevertheless,
enterprises are often pushing applications into production with known vulnerabilities
that cannot be remediated due to a lack of access to the code base, legacy frameworks,
and other roadblocks. These vulnerability exception procedures can be costly and
extremely risky.

RASP implementations are uniquely positioned to help enterprises protect applications
at runtime, neutralizing known vulnerabilities and protecting against previously unknown
threats and zero-day attacks. Depending on the nature of the deployment, RASP can
also transform or block content and database queries so that everything the application
processes is safe.

Many organizations use RASP to embed a last line of defense that travels with the
application, whether in the cloud, on-premise, in pre-production or in production. As an
automated, technical control for compliance requirements, RASP takes the pressure off
of development by performing real-time vulnerability mitigation.

Faster releases

Scalable, devops-friendly application security

Until RASP, application security and DevOps were frequently at odds. The increasingly
distributed, agile nature of application development and deployment has made
preventing a breach complex and challenging. Virtualization, containerization,
microservices and the cloud make applications and data ubiquitous, impossible to
monitor consistently and accurately across different platforms and environments.
Worse yet, pre-production testing requirements create bottlenecks in the software
development process. Some vulnerabilities can even block releases, which can be
problematic in a rapid-release, Continuous Integration / Continuous Deployment (CI/CD)
DevOps cycle.

RASP can be woven directly into the DevOps build/deployment process so applications
can safely be deployed into production without any delays. RASP’s detection and
prevention features can be embedded directly into every application release as part of
the automated CI/CD pipeline, which means applications can automatically self-protect
no matter where they sit in the SSDLC. Security tests are no longer tied to release
schedules and remediation is prioritized using production attack data.

http://www.imperva.com

imperva.com8 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

Smarter responses

Visibility into hidden runtime attacks

Response teams do not have insight into application security events in production and
thus cannot accurately correlate pre-production vulnerability findings with runtime
attack data. Furthermore, there is even more limited visibility into access or exfiltration
attempts for applications and databases moving to the cloud. There is also a significant
amount of noise generated by testing tool results, application firewall activity, and
vulnerability reports. RASP can help security operations and application development
teams filter through the noise and better allocate resources using runtime intelligence.

RASP delivers correlated network, application and database security logs for smarter,
faster responses and powerful visibility into an organization’s actual runtime exposure
to risk. Application security monitoring using RASP is a new capability that has
been designed to give enterprises the ability to determine which applications are
actually under attack in real time (and how), effectively improving risk management
and remediation efforts. In short, application monitoring via RASP answers the
following questions:

Who What Where When

Identify the origin
of the threat

IP address session info
(with User ID) cookie detail

Provide details of the
nature of the threat

Contents of the playload,
playload intelligence

Where the exploit
happened

URL for web applications,
stack trace for SQL queries

When did the
attack take place

Timestamp (down to
the nanosecond)

Specifically, new application-level insights and forensics can also catch authentication,
authorization and transactional fraud. Detailed information on all database queries
issued by specific applications allow for detailed audit trails and support root cause
analysis for data breaches.

http://www.imperva.com

imperva.com9 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

Attack coverage: OWASP top 10 and more

RASP can protect against sophisticated threats and zero-days, which are included but
not limited to the examples listed in the table below:

•	 Command injection

•	 Clickjacking

•	 Cross-Site Scripting (XSS)

•	 Cross-Site Request Forgery
(CSRF/XSRF)

•	 Database Access Violation
(Advanced SQLI)

•	 HTML Injection

•	 HTTP Method Tampering

•	 HTTP Response Splitting

•	 Insecure Cookies

•	 Insecure Transport

•	 JSON Injection

•	 Large Requests

•	 Logging Sensitive Information

•	 Malformed Content-Types

•	 OGNL Injection

•	 Path Traversal

•	 SQL Injection

•	 Logging Sensitive Info

•	 Insecure Transport Protocol

•	 Unauthorized Network Activity

•	 Uncaught Exceptions

•	 Unvalidated Requests

•	 Vulnerable Dependencies

•	 Weak Authentication

•	 Weak Browser Cache
Management

•	 Weak Cryptography & Ciphers

•	 XML External Entity Injection
(XXE)

•	 XML Injection

http://www.imperva.com

imperva.com10 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

USE CASES

1. REDUCE VULNERABILITY
BACKLOG

Application security testing (AST) tools help uncover vulnerabilities in pre-production. But
in most enterprises, the backlog keeps increasing over time. Applications perform critical
business and transactional functions and are frequently pushed into production with known
vulnerabilities. With RASP, more than 95% of the backlog may not ultimately need to be
remediated or fixed by developers as RASP can neutralize the threat in case of attack in
production. This results in significant efficiency gains as well as resource and cost savings.

2. FASTER APPLICATION
RELEASES WITH
SCALABLE DEVSECOPS

Application security and the software development lifecycle are often at odds. If installed
directly into the automated DevOps funnel via Continuous Integration and Continuous
Development tools, RASP delivers security more seamlessly so that controls are always “baked”
into every release by default. Organizations can push applications into production faster
without worrying about security vulnerabilities. This capability reduces operational friction and
fosters more trust and collaboration across teams, helping achieve SecDevOps / DevSecOps
alignment and fluidity.

3. REAL-TIME VISIBILITY
INTO PRODUCTION
ATTACKS

Implementing a RASP solution allows for full visibility into real-time attacks (as opposed to
potential known vulnerabilities). This enriched runtime threat data can be sent to SIEMs and
logging tools to inform both developers and other ecosystem products like WAFs or next-
generation firewalls. This also cuts through the noise from other pre-production tools by
exposing only critical runtime security events -- answering questions like: “What are the most
attacked production apps/assets?”, “What were the data exfiltration events that originated
from outside the firewall?” With improved forensics and post-mortem threat analysis, security
operations can more accurately correlate vulnerabilities and direct remediation efforts for
improved development and compliance.

4. PROVIDE RUNTIME
INTELLIGENCE FOR
DEVOPS

In addition to providing insights on which applications are the most secure/insecure, RASP can
provide critical intelligence for DevOps teams. Similar to other tools developers use during the
design/test phase (e.g. NewRelic for performance and DAST/SAST for code scans), RASP may
be used to provide visibility into what the application will do at runtime (e.g. database calls, file
read/writes, login/logout, failed logins, lateral calls from production applications, versions and
frameworks used, etc.)

Common use cases for RASP

These following scenarios are highlighted to showcase more specifically how security
admins, DevOps teams and developers use RASP to address some of the challenges
facing application security today:

http://www.imperva.com

imperva.com11 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

USE CASES

5. PROTECT LEGACY
APPLICATIONS AND
APPLICATIONS WITH
THIRD-PARTY CODE

In enterprises where applications are the business, protecting legacy apps that drive revenue
is a critical requirement. Most of these legacy apps are written in older languages, in multiple
versions / instances, and do not have active development or support to fix vulnerabilities. RASP
protects these apps without the need for developers or support. Furthermore, RASP protects
vulnerabilities in open source software and third-party code, without the need to touch code.

6. LAST LINE OF DEFENSE
IN A LAYERED SECURITY
MODEL

If a WAF or next-generation firewall is the first line of defense, a RASP solution is the
last line of defense. Today, applications mostly rely on external protection like WAF or IPS
(Intrusion Prevention Systems) and there is a need to build security features into
the application so that it can protect itself at runtime. An application instrumented with RASP is
powerful because RASP has visibility into the logic, behavior and execution of the application.

RASP is an integral part of an application runtime environment. It can detect an
attempt to write high volume data in the application runtime memory or detect unauthorized
database access. RASP has real-time capability to take actions like terminate sessions, raise
alerts, etc. These capabilities make RASP an excellent complement to existing WAFs.

7. OPTIMIZE THE SECURE
SOFTWARE DEVELOPMENT
LIFECYCLE (SSDLC)

Enterprises should continue to use dynamic and static testing technologies, and complete
the secure software development life cycle (SSDLC) by protecting their applications with
RASP while in production. RASP-enabled attack intelligence will improve and optimize the
effectiveness of the SSDLC to ensure tight resource assignments and clear milestones for
remediation.

For instance, RASP plug-ins can be an effective part of a proactive Secure Coding Training
program. Developer training programs can make a positive impact on the number of
vulnerabilities introduced during coding, but it is often a challenge to provide a simple answer
to the questions: “Which ones should I fix? Should a whitelisting or blacklisting approach
be used? Which characters should be eliminated or allowed in the input data? What about
encoding? Obfuscated data? Performance?” A simple and uniform answer would be to fix
critical vulnerabilities that are prone to (or have shown to) exploit in production, and to snap the
RASP plug-in into the application’s deployment package to mitigate risk for remaining lower-
tier vulnerabilities. Either approach is easy to do during code construction without significant
changes to how the application is written or tested.

http://www.imperva.com

imperva.com12 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

USE CASES

8. IMPROVE SECURITY
OPERATIONS & RESPONSE

RASP empowers security operations center (SOC) teams with application-layer
insights to make faster, easier, smarter decisions, shortening the investigation lifecycle and
improving perimeter controls. RASP can unify network, application and database security
intelligence into a pre-correlated report, enabling action based on actual (not theoretical) risk,
such as proactively blocking IP addresses of “bad actors” without the risk of false positives.

Traditionally, when there is an event, perimeter controls provide data on the source IP,
destination IP, and the payload that triggered the signature. Then, the security team would
then have to spend significant amounts of time validating and testing to answer “Is the attack
real? How should we respond?” RASP can build reports and visualizations for real-time events
with extremely low false positive rates, feeding live attack data into a SIEM or other logging
tool, revealing when the database is returning abnormal data sets. This allows security
managers to visualize production environment application threats and correlate with other
data sources, eliminating time wasted on lower-tier investigation and analysis, instead allowing
rapid response by the appropriate teams. Until RASP, SOC managers could not correlate
pre-production vulnerability findings with runtime attack data. Understanding traversals and
movement of exploits across applications and databases can help security teams make more
informed responses for faster forensics to catch authentication, authorization and
transactional fraud.

9. PROTECTION FOR
APPLICATIONS ANYWHERE
& EVERYWHERE

Application architectures are evolving. Modern on-demand and infrastructure-as-a-service
(IaaS) providers are gaining popularity because they enable business gains for better
collaboration and security. For instance, virtualization and migration to cloud services increase
infrastructure security efficiencies by creating high-performance productivity clusters and
user-friendly experiences. As such, applications and their data are now ubiquitous, impossible
to monitor consistently and accurately. However, this means that security must be flexible
and portable. It must be compatible not only with old and new programming languages,
but also web application frameworks and microservices, support for on-premise, cloud and
containerized deployments, as well as a direct integration with a wide array of code scanners,
data logging tools, and SIEMs.

RASP can provide visibility into access or exfiltration attempts for applications
& databases moving to the cloud and across microservices. RASP lives and
travels within the application and logging all runtime security events. Database activity is
monitored from within the application for complete insights into app-level behavior. Applications
stay protected no matter where they are, and production intelligence can be analyzed in SIEMs
and used for enhanced database activity monitoring.

10. REDUCE APPSEC RISK
& INCREASE COMPLIANCE

RASP can serve as a compensating control for unremediated (or impossible to remediate)
vulnerabilities that would otherwise undergo a costly compliance exception process. This
is often the case due to a lack of access to the code base, legacy frameworks, and other
roadblocks and time pressures. With appropriate runtime protection and depending on the
configuration, PCI compliance can be achieved in a way that is fast, accurate, and simple to
maintain. See the following sections for more reading on fulfilling compliance requirements and
the value of RASP for PCI.

http://www.imperva.com

imperva.com13 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

6.3 Develop internal and external software applications securely

6.5 Address common coding vulnerabilities in software development process

6.6 Ensure applications are protected against known attacks

10.2 Implement automated audit trails

10.3 Record audit trail entries

11.4 Use intrusion detection / prevention techniques

Fulfilling compliance requirements

Depending on the implementation, RASP can provide critical technical controls for
organizations attempting to meet stringent regulatory security and data privacy
compliance standards, thanks to a few key functions:

•	 RASP provides data validation mechanisms to prevent the exploitation of potentially
vulnerable coding constructs in software. Data that flows into and through an
application can be inspected by RASP to protect from known, common application
layer attacks and, depending on the methodology, zero-day threats.

•	 Incorporating RASP during application development is a simple and consistent way
to implement the security and visibility capabilities needed in a Secure Development
Lifecycle for both custom-built and off-the-shelf software applications. Whether
deployed during the SDLC or DevOps process, RASP security controls can travel with
the application and always remain “on”.

•	 RASP also logs security incidents and user actions (user identity, type of event, date
and time, success/failure, origination, and name of affected system component) for
improved forensics and post-mortem correlations.

A closer look: PCI and RASP

In the case of the Payment Card Industry Data Security Standard (PCI DSS), RASP can
supply an automated control for a number of requirements (see table below):

http://www.imperva.com

imperva.com14 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

3.0 RASP Technology Implementation

RASP in action: passive and active

All RASP technologies should be able function in two different yet complementary modes:
monitoring and protection.

1.	 When in passive monitoring mode, a RASP solution should utilize very limited application
resources such as CPU and memory (RAM). It should also add minimal latency. While
monitoring mode, RASP should be able to generate similar logging events as if it were in
active protection mode. This allows organizations to build or access a security analytics
report or “heatmap” of where real-world attacks are hitting the application.

2.	 When in active protection mode, a RASP solution should still utilize limited application
resources to detect threats while automatically mitigating attacks in real-time and
preventing database exfiltration. It should not require significant resources to tune or
configure, or require cumbersome rule sets or definition lists. It should add minimal latency
to an application. While in active protection mode, RASP should generate actionable
intelligence about real-world attacks, as well as what action was performed to neutralize
the malicious or malformed payload.

Technical components: analysis and implementation

RASP has two unique technical components: the security analysis plus the implementation of
the application-level analytic processor. A technical evaluation of any RASP must discuss the
merits and the weaknesses of each component both in isolation and in conjunction.

1.	 Application Threat Analysis

How security attacks are detected, computed, and subsequently mitigated is one of the
most important attributes of RASP because it impacts accuracy and performance as well
as implementation. For instance, a common issue with application security controls is the
prevalence of false positives and false negatives, which drain resources and create an
unwieldy amount of noise.

The four main methodologies for attack computation are pattern matching, heuristics, data
flow analysis and language-theoretic security (LANGSEC). Every RASP solution performs
threat analysis using a different approach (and sometimes a blend). A brief overview of each
of the four methodologies and their sensitivity of its respective alerts is outlined in the table
on the next few pages.

http://www.imperva.com

imperva.com15 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

METHOD OVERVIEW FALSE POSITIVES FALSE NEGATIVES

PATTERN MATCHING Pattern matching uses
string literals and regular
expressions to determine if
a payload is safe.
Example: checking if
a SQL query contains
comment characters
like ‘#’.

High
Blindly adding attack
patterns can cause
applications to accidentally
break and identify false
positives.
Attack patterns must be
evaluated by developers
and QA teams by hand
and using automated tests
that exercise the entire
application.

High
If attack patterns do not
exist in the corpus, then
the result will be a false
negative. Diligent pattern
maintenance is important.

HEURISTICS Heuristics use multi-criteria
analysis to statistically
identify problems without
defining them.
Example: detecting
anomalies in HTTP request/
response lifecycles looking
for abnormal events.

High
Anomaly detection has a
high propensity to stop
known good traffic. As
an example, periodic
scheduled internal jobs
(i.e. cron) that access
web services is outside
the “normal” bounds and
requires specific
IP whitelisting.

High
Anomaly detection relying
on statistical methods
can be subverted by
increasing the samples of
bad behavior. Since attack
traffic is not labeled safe
or malicious via supervised
machine learning, payloads
with high frequencies will
get through
(normal behavior).

DATA FLOW
ANALYTICS

Data flow analysis uses
language provided
instrumentation APIs
to track how variables
and data flows through an
application.
Example: watching for
HTTP variables that make
their way into
SQL queries.

High/Moderate
Flow analysis has the
ability to create a high
number of false positives
due to the variability
of how applications
are developed.
As an example, an internal
development practice for
interpolating variables may
not be a real security issue.

Moderate
Flow analysis has the
potential to generate
modern false negatives.

As an example, if an
application is constructed
where information flows
differently (e.g. out of
band producer/consumer
queues) then flow analysis
will miss
an attack.

http://www.imperva.com

imperva.com16 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

2.	 Analytic Processor Implementation

A. Use a WAF or proxy to analyze all traffic for known security threats

B. Instrument an application via agents/modules to inspect data in production

C. Replace the virtual machine itself with one that performs security functions

First, let’s outline the three different approaches to performing runtime application
security analysis and mitigating risk in production:

RASP services are typically implemented using method B or C depending on several
influencing factors such as the provider, performance requirements, language support,
available network and service resources, and the intended result.

Instrumentation of an application to perform security functions (in this case, runtime
self-protection) involves modifying the application itself by adding code, such as with
a framework-based plug-in. In addition to providing Java and .NET plugins in the form
of agents and modules, a RASP-based product should be easy to deploy, maintain
and control. Once deployed, RASP should be a fast, distributed system comprised
of a number of modular services that parse and validate all incoming data without
any dependencies on definitions, patterns, regular expressions, taint analysis or
behavioral learning.

RASP solutions should not require a command and control server to operate. However,
should a server exist, it should provide the ability to enable and disable RASP features
and switch between monitor and protect modes without requiring an application server
to restart. RASP servers should be able to deploy on premise, in virtual environments and
in public/private clouds. A RASP solution should be easy to package into an automated
build/deployment process.

Finally, RASP agents should be able to attach to both legacy and modern applications.
This attachment is work that can be done by both developers and operations team. No
knowledge of application behavior should be required for attachment to be successful.

METHOD OVERVIEW FALSE POSITIVES FALSE NEGATIVES

LANGUAGE SECURITY
(LANGSEC)

LANGSEC is the process
of formally understanding
how data such as content
payloads, database
queries, operating system
commands, etc. will
execute in an environment.
Example: understanding if
a database query contains
a tautology, contradiction
or attempting to access an
invalid column.

Low
Since LANGSEC relies on
building formal grammars
of languages, the number
of false positives is
significantly reduced.

Low
Since LANGSEC relies on
building formal grammars
of languages, the number
of false negatives is
significantly reduced.

http://www.imperva.com

imperva.com17 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

A closer look: instrumentation via agents/modules
vs. VM replacements

All RASP solutions that target applications executing on the Java Virtual Machine
(JVM) or the .NET Common Language Runtime (CLR) must go through fully published
instrumentation and profiling APIs that have existed for years. As a concrete example,
the Java agent specification, specifically used for instrumenting applications, has been
available since Java 1.5 (released in the early 2000’s).

An alternative approach for performing instrumentation is to replace the underlying
virtual machine (VM) with one that can perform security monitoring and protection. While
valid from a technical perspective, this approach has significant challenges:

•	 How can you prove that a VM replacement does not introduce new bugs for
your existing applications? In order to prove this, an organization has to run
significant regression tests across all their applications that will now be targeting
this replaced VM.

•	 What if a bug or vulnerability is detected in the replaced VM? Today, organizations
rely on companies like Microsoft and Oracle to perform bug qualification and
patching, which undergoes a significant battery of tests. An organization looking for
patches is bottlenecked by the company providing VM support.

4.0 Evaluation Criteria for RASP

Things to look for in a RASP solution

The following table describes a core set of requirements that should be considered
when evaluating a RASP solution. Keep in mind that RASP originated as a solution
not simply to test for application security risks, but to mitigate real-time threats to
production applications. It has also evolved to provide powerful capabilities for database
monitoring and application attack visibility for improved forensics and faster remediation.
No two RASP solutions are the same; it’s important to carefully consider each solution’s
capabilities to ensure applications are protected with no impact on operations or
performance and plenty of vendor support.

http://www.imperva.com

imperva.com18 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

RASP EVALUATION SCORESHEET 2020

REQUIREMENT
CAPABILITY
YES (5) / SOME (3)

NO (0)

PRIORITY
HIGH (5) / MED (3)

LOW (0)

SCORE
= CAPABILITY X

PRIORITY

PROTECTED APPLICATION OPERATES AS EXPECTED
RASP solutions must not interfere with expected application behavior.

Functional tests before and after RASP in active / protect mode have same
results (i.e. the application is not “broken”, no false positives)

5

Functional tests before and after RASP in passive / monitor mode have same
results (i.e. the application is not “broken”)

5

PROTECTED APPLICATION PERFORMS AS EXPECTED
RASP solutions must not significantly impact response timings or require significantly more production machine resources.

User experience tests before and after RASP in active / protect mode have
similar results (i.e. very low additional response latency)

5

User experience tests before and after RASP in passive / monitor mode have
similar results (i.e. very low additional response latency)

5

Performance tests before and after RASP in active / protect mode have similar
results (i.e. response timings very similar under expected load)

5

Performance tests before and after RASP in passive / monitor mode have similar
results (i.e. response timings very similar under expected load)

5

Functional tests before and after RASP in active / protect mode show similar
processor usage (i.e. CPU usage within acceptable range)

3

Functional tests before and after RASP in passive / monitor mode show similar
processor usage (i.e. CPU usage within acceptable range)

3

Functional tests before and after RASP in active / protect mode show similar
memory usage (i.e. RAM usage within acceptable range)

3

http://www.imperva.com

imperva.com19 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

REQUIREMENT
CAPABILITY
YES (5) / SOME (3)

NO (0)

PRIORITY
HIGH (5) / MED (3)

LOW (0)

SCORE
= CAPABILITY X

PRIORITY

Functional tests before and after RASP in passive / monitor mode show similar
memory usage (i.e. RAM usage within acceptable range)

3

EXPLOITS EFFECTIVELY PREVENTED
RASP solutions must prevent harm to application users, organizations and production deployment environments.

Dynamic security tests before and after RASP in active / protect mode show
the mitigation of known OWASP Top 10 vulnerabilities such as XSS, SQLi,
Command Injection, etc (i.e. before and after a solution such as Vericode DAST
is employed)

5

RASP in active / protect mode not by-passed through fuzzing or obfuscation
techniques

5

RASP solution detects / neutralizes attacks not visible in HTTP Request
e.g. lateral movement)

5

Security tests before and after RASP in active / protect mode show a significant
reduction in the volume of successful attack traffic penetrating the application

3

Functional tests before and after RASP in active / protect mode show similar
processor usage (i.e. CPU usage within acceptable range)

3

Functional tests before and after RASP in passive / monitor mode show similar
processor usage (i.e. CPU usage within acceptable range)

3

Functional tests before and after RASP in active / protect mode show similar
memory usage (i.e. RAM usage within acceptable range)

3

RASP solution provides data that can be used to enhance developer awareness
/ security training programs

1

http://www.imperva.com

imperva.com20 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

REQUIREMENT
CAPABILITY
YES (5) / SOME (3)

NO (0)

PRIORITY
HIGH (5) / MED (3)

LOW (0)

SCORE
= CAPABILITY X

PRIORITY

BLENDS INTO OPERATION
RASP solutions must fit in with deployment environment and operational procedures to minimize Total Cost of Ownership

RASP solution supports applications (custom, open source, third-party)
deployed in any environment (e.g. on-premises data center, private / public
cloud, containers, PaaS/IaaS)

5

RASP solution does not introduce risk to deployment environment
(e.g. no “regular expression denial-of-service”, no additional
network communications)

5

RASP solution installation is simple 5

RASP solution installation can be automated for “at-scale” deployments
(e.g. CI/CD/DevOps - Jenkins, Chef, Puppet, Ansible)

5

RASP solution does not require connectivity to external cloud service 5

RASP solution does not require additional server infrastructure,
firewall rules, etc.

5

RASP solution is effective immediately with out-of-the-box defaults
(e.g. minimal tuning, no learning-mode required)

5

RASP solution has pre-built integration capabilities with commonly used
monitoring systems (e.g. Splunk, ELK, QRadar, etc.)

5

Changes to RASP configuration do not require server restarts 5

RASP solution provides comprehensive data output (i.e. timestamp, payload,
URL, port, source / destination IP, violation / event type, session ID, cookies,
stack trace)

3

http://www.imperva.com

imperva.com21 A Guide to Runtime Application Self-Protection (RASP) - Whitepaper

REQUIREMENT
CAPABILITY
YES (5) / SOME (3)

NO (0)

PRIORITY
HIGH (5) / MED (3)

LOW (0)

SCORE
= CAPABILITY X

PRIORITY

Upgrades to RASP solution minimize triggers to change
management procedures

1

VENDOR SUPPORT
RASP vendor must provide world-class support, the latest software releases, features, and bug fixes in a timely manner.

RASP solution vendor has predictable release cycle 3

RASP solution vendor provides 24x7 Severity 1 support 3

RASP solution vendor can provide critical hotfixes upon demand 3

RASP solution vendor provides web/phone/email support 3

RASP product documentation is concise and unambiguous 1

RASP product documentation describes output data format, content
and values

1

RASP solution vendor has authorized service providers 1

TOTAL SCORE 0

http://www.imperva.com

Copyright © 2020 Imperva. All rights reserved

A Guide to Runtime Application Self-Protection (RASP) - Whitepaper imperva.com
+1.866.926.4678

5.0 Conclusion

Not all RASPs are created equal

This guide was designed to help security decision-makers think critically about
the capabilities of RASP solutions, compare and contrast RASP against other tools
(e.g. WAFs, penetration testing, application security testing, etc.), and come up
with questions to ask vendors. Not all RASP solutions are created equal; each
provides different levels of visibility, performance, scalability, accuracy, and ease of
implementation / maintenance.

As the category expands, so does the range of effectiveness. Key RASP differentiators
include: methodology, coverage, speed, and ease of deployment. For instance, in today’s
DevOps-enabled business climate, new fully-automated RASP technology that plays
nice with Continuous Integration / Continuous Deployment cycles and reports real-time,
actionable security analytics have a significant edge over traditional tools. Therefore,
it’s important to judge a RASP’s capabilities as it relates to each enterprise’s unique
challenges and use cases while considering the key differentiators. We recommend
that readers use this document as a tool to shape their research when evaluating
competitive offerings.

RASP will continue to evolve

RASP technology is a powerful and innovative component in making applications more
secure given increasing software deployments and distributed application architectures.
With RASP, we are finally able to address attacks in production and explore ways to
embed security functions into the applications themselves. Once a nascent category
undergoing development and expansion, RASP has gained momentum as a viable,
enterprise-grade security solution and a popular choice for achieving DevSecOps
alignment. Enterprises using RASP are currently unlocking powerful insights and
making smarter application development, security operations and vulnerability
remediation decisions.

Imperva is an
analyst-recognized,
cybersecurity leader
championing the
fight to secure data
and applications
wherever they reside.

http://www.imperva.com

